
J. Fluid Mech. (2005), vol. 545, pp. 213–243. c© 2005 Cambridge University Press

doi:10.1017/S0022112005006439 Printed in the United Kingdom

213

Linear and nonlinear convection in solidifying
ternary alloys

By D. M. ANDERSON1 AND T. P. SCHULZE2

1Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA
2Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300, USA

(Received 3 June 2004 and in revised form 9 May 2005)

In this paper we consider buoyancy-driven flow and directional solidification of a
ternary alloy in two dimensions. A steady flow can be established by forcing liquid
downward at an average rate V through a temperature gradient that is fixed in the
laboratory frame of reference and spans both the eutectic and liquidus temperature
of the material being solidified. Our results include both a linear stability analysis
and numerical solution of the governing equations for finite-amplitude steady states.
The ternary system is characterized by two distinct mushy zones – a primary layer
with dendrites composed of a single species and, beneath the primary layer, a
secondary layer with a dendritic region composed of two species. The two layers have
independent effective Rayleigh numbers, which allows for a variety of convection
scenarios.

1. Introduction
While convection during the solidification of binary alloys has been the focus of

attention for a number of years (for reviews see Worster 1997, 2000; Davis 2001),
investigation of multi-component materials is a more recent development. The interest
in multi-component alloys stems from both the relevance to metallurgy and geophysics
and from the emergence of new phenomena in these more complicated systems.

In this paper, we aim to explore convection in mushy layers with substructure due
to the presence of three species. Invariably, this structure emerges as the result of one
material solidifying or precipitating at higher temperatures than the other two. Under
typical growth conditions, the resulting interface is highly unstable and leads rapidly
to the formation of a layer of dendrites. Upon further cooling, a second dendritic layer
composed of two solid species begins to form. Finally, upon being cooled below the
ternary eutectic temperature, all three species completely solidify. This double mushy
layer geometry was identified experimentally by Aitta, Huppert & Worster (2001a, b)
in the aqueous ternary system water–potassium nitrate–sodium nitrate (H2O–KNO3–
NaNO3). Aitta et al. and Anderson (2003) speculated on the possible convective
behaviour in this system. In particular, the following four configurations were anti-
cipated: both mushy layers are convectively unstable, only the primary mushy layer is
unstable, only the secondary mushy layer is unstable, and both mushy layers are stable.

Experimental work by Thompson et al. (2003b) on the aqueous ternary system
H2O–KNO3–NaNO3 described a convection scenario in which the primary mushy
layer was unstable and the secondary mushy layer was stable and non-convective. In
these experiments, convection in the primary and liquid layers reduced the unstable
concentration gradient and, after a transient period of convection, the growth of the
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secondary mushy layer overtook the primary layer and the system underwent a transi-
tion to a non-convecting state. These authors also developed a global conservation
model to describe the system in this regime and were able to obtain good agreement
with the experimentally observed growth characteristics by incorporating into the
model the measured heat and solute fluxes. Another related experimental system,
examined by Bloomfield & Huppert (2003), is the aqueous system H2O–CuSO4–
Na2SO4. These authors assessed regimes of thermal and compositional buoyancy for
a configuration in which the system was cooled on the side.

A number of diverse models have been used to study ternary alloys, with differences
that are dictated in large part by the complexity of the equilibrium phase diagram
under consideration. Krane, Incropera & Gaskell (1997) have developed a ternary
alloy model and have performed two- and three-dimensional simulations of convective
patterns and macrosegregation for the ternary alloy lead–antimony–tin (Pb–Sb–Sn)
(Krane & Incropera 1997; Krane, Incropera & Gaskell 1998). Felicelli, Poirier &
Heinrich (1997, 1998) have performed simulations for selected ternary and quaternary
alloys in two and three dimensions. Computations of micro- and macrosegregation in
nickel-based superalloys and the associated mushy-layer evolution that incorporate a
phase equilibrium subroutine for nickel-based superalloys (Boettinger et al. 1995) have
been performed by Schneider et al. (1997). Beckermann, Gu & Boettinger et al. (2000)
described experiments and computations in which a single Rayleigh number was
used to characterize and predict chimney convection in nickel-based superalloys. The
aqueous ternary system considered by Aitta et al. (2001a,b) is notable in the company
of its metallurgical counterparts in that the underlying ternary phase diagram is readily
defined by only a small number of simple expressions (for details see next section).
The simplicity of the phase diagram for this system, as well as the potential for further
laboratory experiments, has encouraged a number of recent investigations. Anderson
(2003) developed a model for diffusion-controlled (non-convecting) solidification of
a ternary alloy and identified similarity solutions for solidification from a cooled
boundary. Thompson, Huppert & Worster (2003a) developed a related model based
on global conservation arguments. In both of these papers, a detailed characterization
of the non-convecting states was given. We shall make use of this relatively simple
phase diagram in the present paper so that our focus can be directed toward the
convective phenomena occurring in the system.

Following a well-established tradition of binary solidification work, we shall con-
sider a ‘crystal pulling’ configuration, also known as ‘directional’ solidification. The
idea is to force material at a uniform mass flux through a temperature gradient that
is fixed in a laboratory frame of reference. Linear stability analyses (Worster 1992;
Chen, Lu & Yang 1994; Emms & Fowler 1994; Anderson & Worster 1996), weakly
nonlinear analyses (Amberg & Homsy 1993; Anderson & Worster 1995; Chung &
Chen 2000; Riahi 2002) and nonlinear studies (Schulze & Worster 1998, 1999, 2001;
Chung & Worster 2002) of directional solidification of convecting binary alloys have
been carefully investigated. Among these, the linear stability analysis of Worster
(1992) and the nonlinear study of Schulze & Worster (1999) are closely related to the
present study.

For the case of ternary alloys, the most closely related study is that of Anderson
(2003), who examined the similarity solution for non-convecting solidification from a
fixed cold boundary. Much of the intuition gained from the previous work on ternary
alloys can be applied here, but the present configuration differs from that examined
by Anderson in that here, non-convecting solutions can be expressed independently
of time (in a moving frame), and hence are well-suited for stability analyses. We shall
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explore both the linear stability of this system with respect to solutal convection and
the nonlinear behaviour of the system by computational means.

Some of the results we describe here can be compared with previous work by
McKibbin & O’Sullivan (1980, 1981), who considered the onset and nonlinear develop-
ment of convection in a layered porous medium heated from below in a box of finite
width. They described two- and three-layer systems in which individual layer thick-
nesses and permeabilities were prescribed independently. A temperature gradient was
imposed across the entire system and either a constant pressure or zero mass flux
condition was imposed at the upper boundary. Their results included the following
observations: (i) onset of convection tends to be similar to that of a homogeneous
system if the permeability contrast between layers is not large, (ii) permeability
contrast between layers can lead to localization of convection in a higher permeability
layer, (iii) localization of the flow in a relatively thin layer tends to increase the critical
Rayleigh number and increase the wavenumber of the flow pattern, and (iv) critical
Rayleigh numbers for an impermeable top boundary are larger than those for the
constant-pressure top boundary. Nield & Bejan (1999) summarize a number of other
related calculations on convection in layered porous media.

There are several important differences between the layered systems with constant
permeabilities, just described, and the present work. (i) The concentration, rather
than thermal, gradients control the onset and nature of convection and there are two
independent Rayleigh numbers that characterize the system. (ii) Base state properties
such as the mushy-layer thicknesses and non-uniform permeability profiles, which may
vary broadly from one base state to the next, also play a major role. (iii) The interfaces
are free boundaries in our analysis and may evolve to highly nonlinear states. (iv) The
present porous layers are reactive: the solid fraction, and hence permeability, varies
in space and time and the convection under consideration leads generally to local
dissolution or additional growth of solid. Some of the consequences of this evolving
structure, which we address further below, are the formations of inclusions in the
primary and secondary mushy layers in the ternary alloy system.

Our paper is organized as follows. In § 2, we briefly review the ternary phase
diagram and describe the governing equations. In § 3, we identify the basic state
solution and investigate its stability. In § 4, we describe the numerical techniques used
to find nonlinear steady states. In § 5, we describe the results, both linear and nonlinear,
arrived at by these methods. In § 6, we present our conclusions.

2. Formulation
2.1. Ternary phase diagram

The ternary phase diagram identifies the equilibrium phase of a material at a given
temperature and composition. The simplified ternary phase diagram we consider here
is the same as that used by Anderson (2003) and is loosely based on the experimental
system H2O–KNO3–NaNO3 considered by Aitta et al. (2001a); this follows the more
general description of Smallman (1985). The phase diagram we consider makes use of
two simplifying assumptions: there are no solid solutions – that is, complete immisci-
bility in the solid phases, and there exist linear relations between temperature and
compositions along the liquidus surface and cotectic lines. Both of these assumptions
are more representative of aqueous solutions than of metallic systems, which tend
to have extremely complicated phase diagrams. The first assumption provides an
important simplification in that the amount of material released upon re-dissolution
can be ascertained from the local solid fraction(s) without knowledge of the
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Figure 1. A projection of a ternary phase diagram onto the base-plane, where species
compositions are indicated by the convention described in the text. The labelled points P,
S and E correspond to the state of the system at the primary, secondary and eutectic fronts.

thermodynamic conditions under which the material was solidified, i.e. the system
does not exhibit a history-dependence. The second assumption will provide a simple
relationship between liquid compositions and the temperature when an additional
assumption of local equilibrium is invoked below.

In a full ternary phase diagram, the coordinates in a triangular base indicate
the composition while an axis orthogonal to this base represents the temperature.
Figure 1 shows the compositional axes in the phase diagram under consideration.
We denote the liquid compositions of components A, B and C by A, B and C,
which are typically measured in wt % and are normalized here so that A+ B + C =1,
and the temperature by T . The three corners correspond to the pure materials A, B
and C. Each side represents the composition associated with a binary eutectic phase
diagram. For example, the A–B side has C = 0 and the point marked EAB corresponds
to the binary eutectic point of the A–B system. Along each side of the ternary phase
diagram, cotectic curves extend from the binary eutectic points into the interior of the
phase diagram and demark boundaries of three liquidus surfaces. The three cotectic
curves join together at the ternary eutectic point where the temperature is TE and the
compositions are AE , BE and CE . The temperatures along the liquidus surface and
cotectic boundary are specified below in terms of the composition.

A material element moving with the liquid through the primary and secondary
mushy layers can be identified with a solidification path in the ternary phase diagram.
Consider a liquid phase ternary alloy that upon cooling reaches the point P (see
figure 1) on a liquidus surface. Upon further cooling, solid A, composed of pure A,
solidifies to form the dendritic solid in the primary mushy layer while the components
B and C are rejected into the residual liquid. The result of this is an increase of
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component B and C in the liquid and corresponds to a path which descends along
the liquidus surface toward point S on the cotectic curve. In the absence of flow
and solute diffusion, this path corresponds to a ‘tie-line’, along which the ratio of
B and C remains fixed. In the present study, although flow is considered, we find
that the tie-line constraint can still be applied (see § 2.2) (Further evidence supporting
the tie-line condition follows from the experimental measurements reported by Aitta
et al. (2001a, b) for diffusion limited regimes and by Thompson et al. (2003b) for
convective regimes; both references show clearly that the liquid compositions in the
primary mushy layer follow a tie-line to a very good approximation.) Once the cotectic
boundary is reached at point S, solidification continues with solid A (pure A) and solid
B (pure B) forming the dendritic solid of the secondary mushy layer. In the secondary
mushy layer the liquid compositions follow the cotectic curve toward the ternary
eutectic point (point E). At the eutectic point, the remaining liquid solidifies to form
a eutectic solid composed of solids A, B and C. We denote the local volume fraction
of solids A, B and C by φA, φB and φC , the total solid fraction by φ = φA + φB +φC

and the liquid fraction by χ = 1 −φ.
The calculations described in the present paper require the definition of only one

liquidus surface and cotectic boundary and so, without loss of generality, we focus
on the liquidus surface associated with corner A and the cotectic line associated
with the A–B side of the phase diagram. We express these conditions in terms of a
dimensionless temperature T̃ = (T − T P )/�T , where �T = T P − T E is the temperature
difference across both mushy layers defined in terms of the temperature at the primary
mushy layer front T P and the temperature at the eutectic front T E . This implies that
the dimensionless temperature at the primary mushy layer front is zero and the
dimensionless eutectic temperature is − 1. We define the liquidus surface by the
equation

T L(A, B) = −1 + MA(A − AE) + MB(B − BE), (2.1)

and the cotectic line by the two equations

A = AC(T ) = AE +
1

MC
A

(T + 1) , B = BC(T ) = BE +
1

MC
B

(T + 1). (2.2)

The quantities MA, MB , MC
A and MC

B represent the various liquidus and cotectic slopes,
made dimensionless with respect to the temperature difference �T , whose values can
be given in terms of three points on the liquidus surface and cotectic line; we use
point P (where T = 0), point EAB (where T = T AB) and point E (where T = − 1).
Requiring that point P lies on the liquidus surface leads to

1 = MA(AP − AE) + MB(BP − BE). (2.3)

Requiring that the cotectic line pass through the binary eutectic point EAB leads to

MC
A =

T AB + 1

AAB − AE
, MC

B =
T AB + 1

BAB − BE
, (2.4)

where T AB , AAB and BAB are the values of dimensionless temperature T and
compositions A and B at the binary eutectic point EAB . A fourth relation follows
from substituting (2.2) into (2.1); this recognizes that the cotectic line is part of the
liquidus surface:

1 =
MA

MC
A

+
MB

MC
B

. (2.5)
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We shall consider a compositionally-symmetric ternary phase diagram where AE =
BE = 1/3, AAB = BAB = 1/2, AAC = 1/2 and BAC = 0. If we consider symmetry with
respect to temperature, the binary eutectic temperatures on the A–B and A–C sides
of the phase diagram are equal, T AB = T AC , and the equations above can be simplified
further, provided a special choice for T AB is made. In the fully symmetric case, then,
we find that MB = 0, MA = MC

A = MC
B = 1/(AP − 1/3) and that T AB = − 1 +MA/6. That

a specific value of T AB is required for symmetry reflects the fact that while we use
three points to specify the liquidus plane, an additional constraint at a fourth point
on the plane (the temperature at the A–C binary eutectic) is applied to maintain
symmetry.

2.2. Governing equations

In this paper, we consider the two-dimensional flow and directional solidification of a
ternary alloy in the region 0<z <H . This region contains three layers: a liquid layer
in hP < z <H , a primary mushy layer in hS < z < hP and a secondary mushy layer
in 0 <z <hS . A steady flow can be established within this domain by forcing liquid
downward at an average rate V through a temperature gradient that is fixed in the
laboratory frame of reference and spans both the eutectic and liquidus temperature
of the material being solidified. We shall assume there is no latent heat released
upon solidification, there is no solute diffusion, there is no density change upon
solidification, the system is in local equilibrium so that the temperature and species
concentrations are coupled through the liquidus surface and cotectic line in the
equilibrium phase diagram, and that the thermal properties are constant and equal
for all species and phases. Further, we assume the liquid density depends linearly on
temperature and composition

ρ = ρ0(1 + α(T − T P ) + βAA + βBB),

where ρ0 is a reference density, α is a thermal expansion coefficient, and βA and
βB model the change in density with species composition. Finally, we employ the
Boussinesq approximation.

In addition to the thermodynamic variables defined above, we decompose the fluid

motion into a portion due to the uniform translation of the system, −V k̂, and a flux
driven by buoyancy u. Since we have subtracted the uniform motion of the solid
phase, this buoyancy-driven flux is also the Darcy flux – the flux of fluid with respect
to a stationary solid phase. In the liquid, u reduces to the portion of the fluid velocity
driven by buoyancy. We shall represent this quantity using a streamfunction so that
u = {−ψz, ψx} = ∇ × (ψĵ ). Thus, in the absence of convection, we will have u =0,
which corresponds to a uniform downward volume flux of material at rate V .

The variables are made dimensionless using the scalings

ũ =
u
V

, x̃ =
x

κ/V
, T̃ =

T − T P

�T
, p̃ =

p

µκ/Π0

, t̃ =
t

V 2/κ
,

where κ is the thermal diffusivity, µ is the dynamic viscosity and Π0 is a reference
permeability. These scaling closely follow those used by Schulze & Worster (1999),
with the exception of the compositions, which we do not rescale. The non-dimensional
groups that are formed as a result of these scalings are three Rayleigh numbers and
a Darcy number:

Ra =
αgΠ0�T

νV
, RaA =

βAgΠ0

νV
, RaB =

βBgΠ0

νV
, Da =

Π0V
2

κ2
,
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where g is the acceleration due to gravity and ν is the kinematic viscosity. In the
dimensionless equations below, we drop the tildes.

The far-field boundary conditions in the liquid at z = H are

T = T H , A = AH, B = BH, (2.6a)

ψz = ωz = 0. (2.6b)

The last two boundary conditions enforce a parallel flow and a vorticity ω = − ∇2ψ

that is not changing as it moves into or out of the domain. These conditions were
adopted by Schulze & Worster (2001) in favour of conditions that force a uniform
inflow, as the latter type of condition does not allow the possibility of a buoyant
plume escaping the domain.

In the liquid layer, we assume that the fluid flow can be described by the Stokes
equation. The additional equations in the liquid region include conservation of heat
and solute, where we neglect solute diffusion. These equations have the form

Da∇4ψ = Ra
∂T

∂x
+ RaA

∂A

∂x
+ RaB

∂B

∂x
, (2.7a)(

∂

∂t
− ∂

∂z

)
T + u · ∇T = ∇2T , (2.7b)(

∂

∂t
− ∂

∂z

)
A + u · ∇A = 0, (2.7c)(

∂

∂t
− ∂

∂z

)
B + u · ∇B = 0. (2.7d)

The two solute equations, (2.7c) and (2.7d), and boundary conditions, (2.6a), can
be used to show A= AH and B =BH throughout the liquid layer. An important
consequence of this is that there is no solutal buoyancy in the liquid unless a plume
emerges from the mushy zone. The generalized tie-line constraint, discussed below,
can also be traced to this fact. Later, we shall be focused principally on situations
without thermal buoyancy, as this effect is normally dominated by solutal buoyancy
during convection driven from a mushy zone.

The appropriate boundary conditions at liquid–mush interfaces have been discussed
extensively by Schulze & Worster (1999, 2005). Briefly, continuity considerations lead
to no jump in the temperature, pressure and normal velocity. With the flow into
the mushy layer along a steadily solidifying interface, which is the only situation
considered here, solid fraction characteristics emerge from the interface with φ =0
on the boundary. Continuity of solid fraction then gives rise to continuity of the
temperature gradient – even if the effects of latent heat are included. An additional
condition on the velocity is required on the liquid side of the interface, where (2.7a) is
fourth order. Many authors use a no-slip condition with respect to the solid phase at
liquid–porous media boundaries; others allow some form of slip based on a variety
of arguments ranging from empirical observation to homogenization theory. We have
chosen to enforce continuity of the tangential velocity in view of the fact that the solid-
fraction vanishes at the interface. This also has the advantage that a novel condition
on the vorticity can be derived from the resulting set of boundary conditions and
used in place of the condition on the pressure. This condition is implemented in the
linear stability analysis (equation (3.8d)) and in the fully nonlinear numerical solution
(see equation (4.3)). Finally, the position of the free-boundary itself is determined by
the liquidus constraint, extended to the liquid side of the interface. This expresses the
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notion that the dendrites expand as far as possible in order to eliminate constitutional
undercooling in the liquid (Worster 1986). Thus, owing to a combination of scaling
and the uniform inlet concentration mentioned above, the interface is pinned to the
T = 0 isotherm. Taken together, these considerations lead to the following conditions
applied at z = hP :

[T ]+− = [n̂ · ∇T ]+− = [u · n̂]+− = [u · t̂]+− = [p]+− = φA|− = T |+ = 0. (2.8)

Turning to the primary mushy zone, we discuss some general consequences of the
assumption of local equilibrium throughout the primary mushy layer before giving
the full set of governing equations. In particular, we show that a tie-line constraint can
be applied in this case. We follow the example of models used for binary alloys and
assume that the compositions and temperature are constrained to the liquidus surface,
T = T L(A, B). Thus the temperature and composition do not evolve independently
and the solid fraction must adjust to maintain conservation of species according to(

∂

∂t
− ∂

∂z

)
A + u · ∇A = 0, (2.9a)(

∂

∂t
− ∂

∂z

)
B + u · ∇B = 0, (2.9b)

where associated bulk compositions are defined as

A = χA + φA, B = χB + φB. (2.10)

Together, equations (2.9a) and (2.9b) imply a generalized tie-line constraint where the
ratio of the compositions of passive species – B and C under our present conventions–
remains fixed within the primary mushy layer along paths that move with the liquid
velocity. To see why this must hold, it is easier to work with the compositions of the
passive species. We may replace B with χB , and similarly for species C, but not for
species A, as φA is non-zero in the primary mushy layer. These replacements yield an
equation of the form

χ

(
∂

∂t
− ∂

∂z

)
B + B

(
∂

∂t
− ∂

∂z

)
χ + u · ∇B = 0,

and similarly for C. Eliminating (∂/∂t − ∂/∂z) χ from these two equations leads to,
after some manipulation, a single equation of the form(

∂

∂t
− ∂

∂z
+

u
χ

· ∇
)

B

C
= 0. (2.11)

The operator in this equation can be interpreted as a total derivative moving with

an average liquid velocity u/χ − k̂ in the laboratory frame of reference, implying
that the ratio of B and C is invariant moving with the liquid phase. Since their
inlet compositions are in a fixed ratio across the top of the primary mushy layer,
they remain that way within this layer. With both the liquidus constraint and tie-
line constraint (2.11) enforced within the primary layer, all of the compositions are
determined from the temperature field and solute conservation can be used as an
evolution equation for the solid fraction. This is why there are no boundary conditions
listed in (2.8) for the concentration fields. It is important to note that the tie-line
constraint does not apply in cases where solute diffusion is present (Anderson 2003)
and must be modified in situations where fluid enters a mushy zone along a boundary
with varying concentration ratios. This type of situation would be encountered, for
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example, after a primary mush inclusion has formed within the secondary mush owing
to re-dissolution of the secondary species.

The governing equations in the primary mushy layer are then Darcy’s equation,
which we recast in terms of the streamfunction after taking its curl, conservation of
heat and solute species A, the tie-line and liquidus constraints:

∇2ψ = −RaP Π
∂T

∂x
+

∇Π · ∇ψ

Π
, (2.12a)(

∂

∂t
− ∂

∂z

)
T + u · ∇T = ∇2T , (2.12b)(

∂

∂t
− ∂

∂z

)
A + u · ∇A = 0, (2.12c)

B =
BP

1 − AP
(1 − A), (2.12d)

T = T L(A, B), (2.12e)

where Π is the dimensionless permeability function whose form is specified in (2.18).
Accompanying these equations is φB = 0 so that φA + χ =1 throughout the primary
mushy layer. We emphasis that the relations (2.10) between bulk composition and
solid fraction allow us to interpret (2.12c) as an equation for φA (or equivalently
χ) and the tie-line and liquidus constraints (2.12d) and (2.12e) as equations for the
compositions A and B . Another important consequence of the tie-line and liquidus
constraints is that a single effective Rayleigh number appears in the momentum
equation (2.12a) for the primary mushy layer:

RaP = Ra +
RaA(1 − AP ) − RaBBP

MA(1 − AP ) − MBBP
. (2.13)

Following arguments similar to those presented above, the boundary conditions at
the mush–mush interface z =hS are

[T ]+− = [n̂ · ∇T ]+− = [p]+− = [u · n̂]+− = [φA]+− = φB |− = 0, (2.14a)

T = T S |+. (2.14b)

Note that the temperature T S can be deduced by identifying the intersection of the
tie-line and the cotectic constraints on the phase diagram and extending the latter
constraint to apply on the primary mushy-layer side of the interface. This generalizes
the notion of marginal equilibrium by assuming that the secondary mushy-layer
expands just enough to relieve any supercooling. Also, for the mush–mush interface in
the present case, the condition of continuous pressure across the interface is equivalent
to continuity of tangential velocity when the solid fraction (and hence permeabilities)
and species concentrations are also continuous. This is seen by using Darcy’s equation
to transfer the continuity of the pressure (and hence pressure gradient) along the
interface to the velocity field. In the work of McKibbin & O’Sullivan (1980), who
addressed convection in layered porous media of different permeability values, the
condition of pressure continuity does not reduce to continuity of tangential velocity.

The governing equations in the secondary mushy layer are the same as in the
primary mushy layer with the exception that two cotectic constraints replace the
liquidus and tie-line constraints and both solute balance equations are required to
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evolve the two solid fractions φA and φB:

∇2ψ = −RaSΠ
∂T

∂x
+

∇Π · ∇ψ

Π
, (2.15a)(

∂

∂t
− ∂

∂z

)
T + u · ∇T = ∇2T , (2.15b)(

∂

∂t
− ∂

∂z

)
A + u · ∇A = 0, (2.15c)(

∂

∂t
− ∂

∂z

)
B + u · ∇B = 0, (2.15d)

A = AC(T ), (2.15e)

B = BC(T ), (2.15f)

where a second effective Rayleigh number can be identified

RaS = Ra +
RaA

MC
A

+
RaB

MC
B

. (2.16)

The boundary conditions at the eutectic interface z = 0 are simply

T = −1, u · n̂ = 0. (2.17)

Note that by definition of the cotectic lines, A= AE and B = BE automatically when
T = − 1. If the z =0 boundary were held at a temperature below the eutectic, the
solid–mush interface would become an additional free- boundary requiring a full set
of matching conditions.

Finally, in the work that follows we take the dimensionless permeability to be

Π (χ) = χ 3. (2.18)

3. Linear stability analysis
We begin to examine the convective properties of the system in § 2 by way of a

linear stability analysis. In § 3.1 we describe the base state solution, in § 3.2 we outline
the linearized equations and in § 3.3 we describe the numerical method used to solve
them.

3.1. Base state

The base state is a solution of the governing equations that is one dimensional, steady
in the moving frame and has no buoyancy-driven flow (u = 0). We denote the base
state with overbars. In the liquid layer h̄P � z � H ,

T̄ = T H − T H

(
e−z − e−H

e−h̄P − e−H

)
, (3.1a)

Ā = AH, B̄ = BH . (3.1b)

In the primary mushy layer h̄S � z � h̄P ,

T̄ = T S

(
e−z − e−h̄P

e−h̄S − e−h̄P

)
, (3.2a)

χ̄ =
MA(AH − 1) + MBBH

MA(AE − 1) + MBBE + 1 + T̄
, (3.2b)
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Ā =
AH − 1

χ̄
+ 1, (3.2c)

B̄ =
BH

χ̄
, (3.2d)

and φ̄A =1 − χ̄ , φ̄B = φ̄C = 0, where the cotectic constraints can be used to show that

T S = −1 + MC
B

(
BH

χS
− BE

)
, (3.3a)

χS =
MC

A (AH − 1) − MC
B BH

MC
A (AE − 1) − MC

B BE
. (3.3b)

In the secondary mushy layer 0 � z � h̄S ,

T̄ = T S − (T S + 1)

(
e−z − e−h̄S

1 − e−h̄S

)
, (3.4a)

Ā = AC(T̄ ), (3.4b)

B̄ = BC(T̄ ), (3.4c)

χ̄ =
1 − AH − BH

1 − Ā − B̄
, (3.4d)

φ̄A = AH − Āχ̄ , (3.4e)

φ̄B = 1 − χ̄ − φ̄A. (3.4f)

Finally, upon applying the thermal gradient jump conditions at z = h̄P and z = h̄S we
find that these interface positions are given by

h̄P = ln

(
T H + 1

T H + e−H

)
, (3.5a)

h̄S = ln

(
T H + 1

T H − T S + e−H (T S + 1)

)
. (3.5b)

3.2. Linearized equations

We examine the linear stability of this base-state solution by introducing infinitesimal
perturbations and linearizing the system of governing equations with respect to these
perturbations. Together, the base states and the perturbations in terms of normal
modes take the form T (x, z, t) = T̄ (z) + T̂ (z)eσ teiαx , ψ(x, z, t) = 0 + iψ̂(z)eσ teiαx and
hP (x, t) = h̄P + ĥP eσ teiαx .

The linearized system of equations is given below. In this case the composition
perturbations can be decoupled from the remaining variables. In fact, in the liquid
layer, Â= B̂ = 0. The far-field boundary conditions in the liquid at z = H are

T̂ =
dψ̂

dz
=

d3ψ̂

dz3
= 0. (3.6)

The linearized equations in the liquid are

d4ψ̂

dz4
− 2α2 dψ̂

dz2
+ α4ψ̂ − αRa

Da
T̂ = 0, (3.7a)

d2T̂

dz2
+

dT̂

dz
− α2T̂ + α

dT̄

dz
ψ̂ = σ T̂ . (3.7b)
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The linearized boundary conditions for the perturbed quantities at z = h̄P are

[T̂ ]+− =

[
dT̂

dz

]+

−
= [ψ̂]+− =

[
dψ̂

dz

]+

−
= 0, (3.8a)

T̂ + ĥP dT̄

dz
= 0, (3.8b)(

χ̂ + ĥP dχ̄

dz

)∣∣∣∣−

= 0, (3.8c)

dψ̂

dz

∣∣∣∣∣
−

− Da

(
α2 dψ̂

dz
− d3ψ̂

dz3

)∣∣∣∣∣
+

= 0. (3.8d)

The linearized equations in the primary mushy layer are

d2ψ̂

dz2
− 1

Π (χ̄ )

dΠ (χ̄ )

dχ

dχ̄

dz

dψ̂

dz
− α2ψ̂ + αRaP Π (χ̄ )T̂ = 0, (3.9a)

d2T̂

dz2
+

dT̂

dz
− α2T̂ + α

dT̄

dz
ψ̂ = σ T̂ , (3.9b)

d

dz
[χ̄ T̂ + (T̄ − T A)χ̂ ] + α

dT̄

dz
ψ̂ = σ [χ̄ T̂ + (T̄ − T A)χ̂ ], (3.9c)

where T A = − 1 +MA(1 − AE) − MBBE .
The linearized boundary conditions for the perturbed quantities at z = h̄S are

[T̂ ]+− =

[
dT̂

dz

]+

−

= [ψ̂]+− =

[
dψ̂

dz

]+

−

= 0, (3.10a)

T̂ + ĥS dT̄

dz
= 0, (3.10b)[

χ̂ + ĥS dχ̄

dz

]+

−
= 0, (3.10c)(

φ̂A + ĥS dφ̄A

dz

)∣∣∣∣−

= 0. (3.10d)

The linearized equations in the secondary mushy layer are

d2ψ̂

dz2
− 1

Π (χ̄ )

dΠ (χ̄ )

dχ

dχ̄

dz

dψ̂

dz
− α2ψ̂ + αRaSΠ (χ̄ )T̂ = 0, (3.11a)

d2T̂

dz2
+

dT̂

dz
− α2T̂ + α

dT̄

dz
ψ̂ = σ T̂ , (3.11b)

d

dz

[
χ̄ T̂ + (T̄ − T �

A)χ̂ + MC
A φ̂A

]
+ α

dT̄

dz
ψ̂ = σ

[
χ̄ T̂ + (T̄ − T �

A)χ̂ + MC
A φ̂A

]
,

(3.11c)

d

dz

[
χ̄ T̂ + (T̄ − T �

B)χ̂ − MC
B φ̂A

]
+ α

dT̄

dz
ψ̂ = σ

[
χ̄ T̂ + (T̄ − T �

B)χ̂ − MC
B φ̂A

]
,

(3.11d)

where T �
A = − 1 − MC

AAE and T �
B = − 1 − MC

B (1 − BE).
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The linearized boundary conditions for the perturbed quantities at z =0 are

T̂ = ψ̂ = 0. (3.12)

3.3. Linearized equations: solution method

We solve this linear system by implementing a pseudo-spectral Chebyshev method
(Trefethen 2000). We outline some of the key steps below. First, we rescale each layer
onto the interval − 1 � z′ � 1, where

z′ =
2(z − h+)

h+ − h− + 1. (3.13)

In the liquid layer h+ =H and h− = h̄P , in the primary mushy layer h+ = h̄P and
h− = h̄S and in the secondary mushy layer h+ = h̄S and h− =0. We discretize the
vertical coordinate in each of the three layers (liquid, primary mush and secondary
mush) using Chebyshev points

z′
j = cos

(
jπ

N

)
, j = 0, 1, 2, . . . , N, (3.14)

where N =NL in the liquid layer, N =NP in the primary layer and N = NS in the
secondary layer. The dependent variables are also discretized. Derivatives are com-
puted using Chebyshev differentiation matrices as described by the Matlab imple-
mentation cheb.m in Trefethen. This discretization leads to a generalized eigenvalue
problem of the form Ay = σBy where A and B are (2NL +3NP + 4NS + 11) × (2NL +
3NP +4NS + 11) matrices representing the system of linearized equations and boun-
dary conditions, σ is the eigenvalue and y is a vector whose components are the
discretized values of the dependent variables through the liquid layer, primary mushy
layer and secondary mushy layer, including the unknowns ĥP and ĥS . The calcula-
tions shown in this paper have NL = NP = NS =16.

We solve for the eigenvalues and eigenfunctions as functions of the system
parameters; in particular, σ = σ (α, Ra, RaP , RaS, Da) where the dependence on the
base state parameters and the phase diagram has been suppressed. As described
in more detail in § 5, for a given set of parameters associated with the base state
we examine the influence of the two Rayleigh numbers RaP and RaS and the
wavenumber α on linear convection. In particular, for the case of neutral stability, we
seek combinations of these two Rayleigh numbers as α varies, for which the largest
Re(σ ) is zero. Oscillatory modes of instability were not observed for the parameters
investigated.

4. Nonlinear convection
In this section, we describe the computational procedures used to find nonlinear

steady solutions to the system of equations defined in § 2. We use a combination of
Gauss–Seidel iteration and successive over-relaxation to iteratively update the various
fields governed by elliptic equations until a steady solution is reached. On each
iteration, this procedure is supplemented with a numerical integration to determine
bulk compositions and a relaxation of the interface positions.

We impose symmetry conditions along the vertical boundaries at x = 0 and x = L

for all three subdomains, so that we seek steady periodic solutions by solving for half
of a convection cell. As L approaches the preferred wavelength, it is also possible to
compute a full convection cell with the same equations.



226 D. M. Anderson and T. P. Schulze

Since we are neglecting the diffusion of solute, the compositions retain their far-
field values throughout the liquid domain and there are no solute gradients to drive
convection in the liquid region. For the nonlinear problem, we consider only the case
Ra = 0, i.e. no thermal buoyancy. Working in a streamfunction–vorticity formulation,
this leaves us with three elliptic equations in the liquid region:

∇2ψ = −ω, (4.1a)

∇2ω = 0, (4.1b)

∇2T + Tz = u · ∇T . (4.1c)

We enforce the boundary conditions detailed in § 2 by matching the temperature
and streamfunction, along with their normal derivatives, at the free boundaries.
The coupling between the domains is a non-overlapped domain decomposition. In
principle, we can form any two distinct linear combinations of the Neumann and
Dirichlet data at the upper and lower sides of the interface and alternately apply
the data from one region to the boundary of the second. In the case of Laplace’s
equation, this is a stable algorithm except in the notable case of passing Dirichlet
data in one direction and Neumann in the other. While the calculations of Schulze &
Worster (1999) suggest this instability is suppressed by the translation term in (4.1c),
we used the combinations

[T ± γ1n̂ · ∇T ]+− = 0, [ψ ± γ2n̂ · ∇ψ]+− = 0, (4.2)

to apply these boundary conditions. The constants γ1 and γ2 are arbitrary and were
chosen to balance the magnitude of the Dirchlet and Neuman data. Using Darcy’s
equation, Stokes equation, the continuity of both velocity components and the pressure
boundary condition at z = hP , we arrive at

n̂ · ∇ω|+ =
1

Da
n̂ · ∇ψ |−, (4.3)

which we employ as a vorticity boundary condition by using data from the previous
iteration to evaluate (i.e. backstep) the right-hand side of the equation. While this
solves the problem of finding a vorticity boundary condition, it has the disadvantage
of being singular in the limit of small Darcy number. The Darcy number is normally
a very small parameter for porous media – of the order of 10−3 or smaller – so we
went to some length to verify that our choice of Da = 0.05 was not compromising our
results. Our investigation indicated this parameter has a relatively mild influence on
stability over the range of Darcy number Da � 0.05. This is discussed further below,
but for now we note that (4.3) is the only place where the Darcy number enters our
model, owing to the absence of density gradients in the liquid region. This may seem
surprising as one associates this parameter with permeability and, therefore, with the
porous medium, but, in this model, the effects of permeability are largely represented
through the Rayleigh numbers, which characterize the bulk properties of the porous
media.

In the primary mushy layer, we iterate on the elliptic form of Darcy’s equation
(2.12a) and the stationary heat equation,

∇2T + Tz = u · ∇T , (4.4)

and directly integrate

Az = u · ∇A, (4.5)
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for the bulk composition A by back-stepping the advective term. From this we can
update the solid-fraction φA and permeability Π . Note that this integration must
proceed downward from the top of the layer, where the boundary condition φ =φA =0
applies.

At the mush–mush interface, we match the streamfunction, temperature and their
derivatives in the manner described above. The secondary mush inherits the value
of φA and the additional boundary condition φB = 0. In this layer, we integrate to
determine the bulk composition B as well as A. The equations and procedures are
the same as in the primary layer.

The computations are carried out on transformed versions of the equations that
map the domain into three adjacent rectangular domains. The general form of this
transformation is

ξ =
x

L
, ζ =

z − h−(x)

h+(x) − h−(x)
,

where L is the domain width, h+(x) is the upper boundary of the subdomain and
h−(x) is the lower boundary. These transformations introduce a number of additional
nonlinear terms, including terms explicitly involving the interface positions z = hP and
z = hS , into the bulk equations. The interface positions are updated on each iteration
by relaxing them toward the isotherms T = 0 at z = hP and T = T S at z = hS . All
of the nonlinear computations shown in this paper have a 64 × 32 grid resolution
on each of the three rectangular domains, which was more than sufficient to obtain
good agreement with the linear calculations of § 2 where this comparison could be
made. (We found that calculations with higher resolutions started to show higher
numerical roundoff than truncation error in the limit where the amplitude of the
buoyancy-driven flow vanished.)

Finally, as many of the computed nonlinear solutions lie along unstable sub-
critical bifurcations, we employ a continuation scheme that trades the specification
of some linear combination of the two effective Rayleigh numbers RaP and RaS

for the specification of the streamfunction value at a selected grid point (I, J ).
Note that only a single data point ψI,J can be used because the linear combination of
Rayleigh numbers is to replace that unknown in the system of equations being solved.
Alternatively, we can use a norm of the solution, but this is far more expensive. Either
way, we essentially fix the amplitude of the solution and iterate to obtain the correct
Rayleigh numbers rather than fixing the Rayleigh numbers and letting the iteration
scheme evolve naturally, in which case we would miss unstable steady states. An
efficient way of implementing this scheme is to write down the discretized model and
solve for the Rayleigh number. This explicit formula can then be used to update the
streamfunction at the coordinates (I, J ). For this, it is best to start the sweep through
the grid at (I, J ), so that the value obtained is consistent with the Rayleigh number
predicted by the explicit difference formula.

5. Results
All of the results discussed in this section correspond to a material with a symmetric

phase diagram (see figure 1 and table 1), zero thermal Rayleigh number Ra = 0, far-
field temperature T H = 0.4, Darcy number Da =0.05 (unless otherwise noted) and a
domain height H = 2.

The parameters that control the characteristics of the base-state solution include
the far-field temperature and the initial liquid composition (i.e. far-field compositions
in the liquid layer). The total depth of the combined mushy layers is controlled by the
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I II III

AH 0.37 0.55 0.46
BH 0.35 0.35 0.44
CH 0.28 0.10 0.10
T H 0.4 0.4 0.4

AS 0.357143 0.4375 0.448980
BS 0.357143 0.4375 0.448980
CS 0.285714 0.125 0.10204
T S −0.350649 −0.519231 −0.087003
hP 0.961 0.961 0.961
hS 0.513 0.352 0.830
φ(z = hS) 0.02 0.2 0.02
φ(z = 0) 0.16 0.7 0.7

Table 1. Parameter values that characterize the solidification path on the phase diagram for
base state configurations I, II and III and also key parameters calculated from the base-state
solution. In all cases considered here AE = BE = CE = 1/3, AP = AH , BP = BH and CP = CH .
Additionally, by our choice of non-dimensionalization, T P =0 and T E = − 1. The parameter
values at point S are not independent – they can be computed from the constraints placed on
the phase diagram.

far-field temperature T H which we have fixed for simplicity. Additionally, the base-
state solid fraction is an increasing function of depth into the mushy layers, which
implies that the permeability is a decreasing function of depth. Consequently, the
secondary mushy layer is less permeable than the primary mushy layer. The initial
compositions are key controls of the base-state properties such as the relative
thicknesses of the primary and secondary mushy layers and the permeabilities (or solid
fractions) of each layer. We have extensively explored different initial compositions
throughout the ternary phase diagram and have identified the following general trends.
First, if we fix the value of B and reduce the value of C (corresponding to approaching
the A–B side of the ternary phase diagram) the secondary-layer thickness increases
at the expense of the primary-layer thickness and the solid fractions in both primary
and secondary layers increase. Secondly, if we fix C and increase B (approaching the
A–B cotectic boundary), the secondary-layer thickness again increases at the expense
of the primary-layer thickness. In this case, while the maximum solid fraction (at the
bottom of the secondary mushy layer) remains constant, the maximum solid fraction
in the primary layer goes down. These basic trends are consistent with those shown
in figures 6 and 7 of Anderson (2003).

We emphasize that the various phase-diagram parameters determine the base state
and, thus, influence convection primarily through the resulting solid-fraction profiles
and mushy-layer thicknesses. With this observation in mind, we have organized
our calculations with an eye toward understanding the influence of changes in the
qualitative characteristics of the base states rather than by an extensive exploration
of phase diagram parameters. In particular, we focus attention on three base-state
configurations (denoted by I, II and III as in table 1), which are representative of the
range of characteristics exhibited by the base state. Base state I has comparable mushy-
layer thicknesses with relatively high permeabilities. Base state II has a relatively thin
secondary mushy layer of low permeability. Base state III has a relatively thin
primary mushy layer with high permeability and a thick secondary mushy layer with
low permeability.
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Figure 2. A plot of the base-state temperature, composition and solid-fraction profiles for
the parameter values in table 1, base state I, along with a diagram indicating the solidification
path on the ternary phase diagram.

While the above base-state properties influence the details of the flow, the para-
meters that control the characteristics of the convection are the two Rayleigh numbers
and the wavenumber α (or domain width L = π/α), all of which can be specified
independently of the phase diagram parameters. As documented by Aitta et al. (2001b)
and by Anderson (2003), for a given density function – which depends generally on
temperature and composition – it is possible to identify solidification paths starting
at different locations throughout the entire ternary phase diagram (i.e. making use of
all three liquidus surfaces) that allow all possible combinations of stable and unstable
density stratification through the two mushy layers to occur. In our model, changes
in the base state characteristics (composition profiles, solid fraction profiles, etc.) that
result from moving the initial composition from a point on one liquidus surface to
its image on another can be addressed simply by an appropriate relabelling of the
compositions A, B and C (in fact, we need only consider half of a single liquidus
surface). Thus, the different density stratification scenarios realized by traversing the
entire ternary phase diagram (for a given material system), may be addressed simply
by treating RaP and RaS – the quantities that measure the density stratification – as
parameters whose values (positive, negative or zero) may be independently specified
for each base-state configuration under consideration here.

In order to make clear the general nature of the non-convecting state, we show
in figure 2 the key properties of base-state I. Note that the base-state solution is
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Figure 3. This figure shows neutral stability curves for base state I. The neutral curve
for convection with equal Rayleigh numbers (RaS = RaP ) has critical Rayleigh numbers
RaP = RaS =18.04 and wavenumber α = 1.52. The neutral curve for convection driven from
the primary mushy layer (RaS = 0) has critical Rayleigh number RaP = 23.24 and wavenumber
α = 1.50. The neutral curve for convection driven from the secondary mushy layer (RaP =0)
has critical Rayleigh number RaS = 64.19 and wavenumber α = 2.08.

independent of all Rayleigh numbers and the wavelength. Figure 2(a) shows that the
temperature is continuous and differentiable throughout the entire domain, owing
to our simplifying assumptions of zero latent heat and equal thermal properties for
all three components in both the liquid and solid phases. The dotted lines indicate
the interface positions. The composition profiles, shown in figure 2(b) are constant
in the liquid and have an exponential form in the mushy layers with discontinuous
derivatives at the interfaces. The fact that A= B at the secondary interface and
A= B = C at the eutectic front are the result of the symmetry of the system we
have chosen to examine. Note that the composition values sum to unity along any
horizontal line. The solid fraction profiles are shown in figure 2(c). The solid portion
of the primary mushy layer consists only of material A, while the secondary mushy
layer has solid material of type A and B. The curves in the secondary layer show the
fraction of the solid that is material A and the total solid fraction. Thus, the fraction
of material B is accounted for by the region between the curves, marked with the
letter B. Finally, figure 2(d) indicates the path that the state of a representative control
volume follows on the phase diagram as we move from the inlet conditions, marked
with the star, down to the eutectic front. This path reflects the tie-line, liquidus and
cotectic constraints. As indicated in table 1, base states II and III use different initial
compositions and therefore differ from base state I primarily with respect to the
maximum solid fraction and the thickness associated with each mushy layer.

The neutral stability curves shown in figure 3 correspond to base state I for the three
cases of convection driven equally from both layers (RaP = RaS), from the primary
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layer only (with RaS = 0) and from the secondary layer only (with RaP = 0). All three
neutral stability curves exhibit a single-mode (i.e. local minimum) structure. In fact,
all other cases investigated (including II and III, but also many other base, state
configurations corresponding to different initial compositions in the ternary phase
diagram) displayed only unimodal neutral curves. The unimodal characteristic of the
neutral stability curve has been observed for the binary alloy mushy-layer system
calculated by Worster (1992) for the case of zero solute diffusivity and, owing to our
assumption of negligible solute diffusivity, is consistent with our observations.

The minimum Rayleigh number(s) and linear critical wavenumber can vary broadly.
We have compiled this information in table 2 along with results from our nonlinear
study, in which we were able to, in some cases, obtain independent estimates for the
linear critical Rayleigh numbers. (The nonlinear data is missing in cases where the
critical Rayleigh numbers were especially large or one of the layers was especially
thin as, these conditions lead to numerical difficulties.) Following Beckermann et al.
(2000), we introduce at this point two rescaled Rayleigh numbers that characterize
more naturally the properties of each particular layer. In particular, each new Rayleigh

number has the form Ranat =(�ρ/ρ0)gΠ̃h/(κν) so that each is based on the density

difference �ρ, thickness h and effective permeability Π̃ for each layer (rather than
reference values of these quantities that are less representative of each particular
mushy layer). After some manipulations, these new Rayleigh numbers can be related
to those defined above by

Ranat
P = RaP [−T S(hP − hS)Π̃P ], (5.1)

Ranat
S = RaS[(T

S + 1)hSΠ̃S], (5.2)

where Π̃P and Π̃S are dimensionless effective permeability values for each layer.
For simplicity, we have defined Π̃P and Π̃S as χ̃ 3

P and χ̃ 3
S; that is the cube of the

average liquid fraction in each layer. The values of these rescaled Rayleigh numbers
at the linear critical point are less variable from case to case compared to the original
versions and thus provide a more unifying basis for predicting the onset of convection.

Table 2 is organized as follows. For each base state (I, II, III) we show five con-
vective scenarios: (i) RaS < 0, RaP > 0 – a very stably stratified secondary layer
with an unstably stratified primary layer; (ii) RaS = 0, RaP > 0 – a neutrally stratified
secondary layer with an unstably stratified primary layer; (iii) RaS = RaP – two
unstably stratified mushy layers; (iv) RaS > 0, RaP = 0 – an unstably stratified
secondary layer with a neutrally stratified primary layer; and (v) RaS > 0, RaP < 0 –
an unstably stratified secondary layer with a very stably stratified primary layer.
For each case, we have given the linear critical Rayleigh numbers and wavenumber
calculated from the linear stability analysis and, where possible, the corresponding
linear critical Rayleigh numbers calculated using the nonlinear code. Table 2 also
gives further details about the bifurcating solutions, which we discuss in more detail
below.

We point out the following general features of the results in table 2. First, the linear
critical Rayleigh number varies broadly for the different base states and convective
scenarios considered. The critical wavenumber tends to be larger for cases in which
an unstable layer is paired with a stable layer; this is generally accompanied by a
localization of the convection within the unstable layer. The largest wavenumbers
were always observed in connection with convection isolated in the secondary mushy
layer. In the case in which an opposing density stratification is not present, the
convection tends to be of larger scale.
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RaP RaS Ranat
P Ranat

S αc RaP RaS Bifurcation RaP RaS Amplitude Location

I 37.0 −60.0 5.64 −15.06 1.56 37.3 −60.5 Super. 37.4 −60.6 0.454 P
23.24 0 3.54 0 1.50 23.3 0 Super. 23.6 0 0.512 P
18.04 18.04 2.75 4.53 1.52 18.1 18.1 Super. 18.2 18.2 0.512 P
0 64.19 0 16.11 2.08 0 64.6 Sub. 0 62.7 0.189 S

−104.94 104.94 −15.99 26.34 4.48 −104 104 Sub. −103.9 103.9 0.995 S

II 38.46 −150 8.87 −4.22 1.73 38.4 −150 Super. 39.1 −152.5 0.315 P
35.31 0 8.14 0 1.73 35.5 0 Super. 35.8 0 0.308 P
34.53 34.53 7.96 0.97 1.73 34.8 34.8 Super. 35.1 35.1 0.299 P
0 730.25 0 20.59 4.43 – – – – – – –

−1396 1396 −321.8 39.37 7.60 – – – – – – –

III 444.2 −444.2 4.93 −88.22 2.95 – – – – – – –
151.9 0 1.69 0 1.93 – – – – – – –
68.4 68.4 0.76 13.58 1.92 – – – – – – –
0 115.0 0 22.84 2.01 – – – – – – –

−1086.3 300 −12.06 59.58 3.77 – – – – – – –

Table 2. Results of linear and nonlinear calculations associated with five convection scenarios for the three different base state configurations I,
II and III identified in table 1. In particular, the linear critical Rayleigh numbers (for two different sets of scalings) and the critical wavenumber
are shown in the five columns under the linear heading. Under the nonlinear heading, where possible, we show the two Rayleigh numbers at zero
amplitude to be compared with the corresponding ones from the linear analysis. We also indicate whether the bifurcation is supercritical (super.)
or subcritical (sub.). Additionally, under the ‘Inclusion’ heading, we give the Rayleigh number values and amplitude (measured by the L2 norm
of the buoyancy-driven streamfunction) at which an inclusion forms. The final column indicates whether the inclusion forms as a liquid inclusion in
the primary layer (P) or as a primary mushy layer inclusion in the secondary layer (S). For the calculation of the different Rayleigh numbers under
the linear heading we note that RaP = gP Ranat

P and RaS = gSRanat
S (base case I: gP = 0.1524, gS = 0.2510; base case II: gP = 0.2305, gS = 0.0282;

base case III: gP =0.0111, gS = 0.1986). For simplicity, we have defined Π̃P and Π̃S as χ̃3
P and χ̃3

S ; that is the cube of the average liquid fraction
in each layer.
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Figure 4. The main solid curve corresponds to the linear critical value of the Rayleigh
numbers separating stable and unstable solutions for base case I using Da= 0.05. The dashed
curve is the same result but with Da= 10−5. Insets show the convection pattern at the
four open circles along the main solid curve – moving from upper left to lower right. The
leftmost diamond shows the approximate location of the transition point from one roll (on
the right-hand side) to two stacked rolls (on the left-hand side). The rightmost diamond shows
the approximate location of the transition from one roll (on the left-hand side) to two stacked
rolls (on the right-hand side).

These trends can be observed in figures 4–6, where we map out in the (Ranat
S , Ranat

P )-
plane, an overall boundary between linearly stable and unstable regions. Figure 4
shows such results for base case I using the results of the linear stability analysis
described in § 3. The solid curve in the main plot corresponds to the linear critical value
of the Rayleigh numbers separating stable and unstable solutions using Da = 0.05.
The four inset plots show the convective streamlines at parameter values indicated
by the four open circles along the main solid curve – moving from upper left to
lower right – and correspond to four of the five flow configurations detailed in
table 2 (the convective pattern for the case with RaP = RaS is very similar to the case
RaP > 0, RaS = 0 and so is not shown here). In these insets, the horizontal dashed
lines show interface positions separating the liquid layer, primary mushy layer and
secondary mushy layer. In the upper left inset plot, where the secondary layer is
very stably stratified, we see that the main convective flow occurs in the primary
mushy layer and liquid layer. The solid horizontal line appearing in the secondary
mushy layer is a separating streamline below which there is a very weak reverse
flow. Comparing the four inset plots from left to right shows the convective flow
eventually becoming localized in the secondary mushy layer. In the lower right inset,
a small-scale convection pattern appears in the secondary layer. In this case, there is
a weak reverse flow occurring in the primary layer (above the horizontal separating
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Figure 5. The main solid curve corresponds to the linear critical value of the Rayleigh
numbers separating stable and unstable solutions for base case II using Da= 0.05. Inset plots
show the buoyant convection at the four open circles – moving from upper left to lower right –
indicated on the main plot. The leftmost diamond shows the approximate location of the
transition point from one roll (on the right-hand side) to two stacked rolls (on the left-hand
side). The middle diamond shows the approximate location of the transition from one roll (on
the left-hand side) to two stacked rolls (on the right-hand side). The rightmost diamond shows
the approximate location of the transition from two stacked rolls (on the left-hand side) to
three stacked rolls (on the right-hand side).

streamline). We discuss these reverse flows and their impact on the solid fraction
distribution in the mushy layers in the context of the nonlinear solutions below. The
two open diamonds shown on the main solid curve indicate the points along the curve
where the convective flow pattern makes a transition from single-cell flows to these
stacked-cell flows. In particular, the leftmost diamond shows the approximate location
of the transition point from one roll (on the right-hand side) to two stacked rolls (on
the left-hand side). The rightmost diamond shows the approximate location of the
transition from one roll (on the left) to two stacked rolls (on the right). Physically,
the stacked cell case suggests that the main flow avoids the stably stratified region
(whether it be in the primary or secondary mushy layer) where the resistance to
convective flow is large and instead prefers a configuration in which a weak reverse
flow is generated in the stably stratified region.

In figure 4, the dashed curve in the main plot shows the same result as the main
solid curve, but with a much smaller value of the Darcy number Da = 10−5 that is
more representative of physical systems than Da = 0.05. We observe a destabilization
of the flow (smaller Rayleigh numbers) primarily for the flow configurations in which
there is significant flow in the primary mushy layer and liquid layer. Since the Darcy
number enters our calculations only in the interfacial condition at the liquid–primary
mush interface, the effect of changing Da becomes negligible for convection modes
localized in the secondary mushy layer. Corresponding to the upper left-hand portion
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Figure 6. The main solid curve corresponds to the linear critical value of the Rayleigh
numbers separating stable and unstable solutions for base case III using Da= 0.05. Inset plots
show the buoyant convection at the four open circles – moving from upper left to lower right –
indicated on the main plot. The leftmost diamond shows the approximate location of the
transition point from one roll (on the right-hand side) to two stacked rolls (on the left-hand
side). The rightmost diamond shows the approximate location of the transition from one roll
(on the left-hand side) to two stacked rolls (on the right-hand side).

of the main plot where the difference between the solid and dashed curves can be
observed, we note that the critical wavenumbers for the case Da = 10−5 (dashed curve)
are slightly larger (leading to a horizontally more compact set of rolls) than that for
the case Da = 0.05 (solid curve). The overall effect of decreasing the Darcy number is
to destabilize the system, consistent with observations in binary mushy-layer systems
(Worster, 1992). As discussed in § 4, our choice of a somewhat large Darcy number is
influenced by our implementation of (4.3) in the numerical solution of the governing
equations. Note that the limit Da → 0 implies a no-slip condition on the mush–liquid
interface (Schulze & Worster 1998).

Figure 5 shows results analogous to those of figure 4 for base case II. Here the
base state is less permeable overall, with a much thinner secondary layer. The main
solid curve corresponds to Da = 0.05. The insets – from upper left to lower right –
correspond to the four open circles indicated along the main solid curve. Again, in
the two extreme cases, we observe stacked convection cells with weak reverse flow in
the stably stratified layer. In fact, in the lower right-hand inset there are three stacked
cells, although the cells driven in the primary mushy layer and liquid layer from the
convection in the secondary layer are very weak. Along the main solid curve three
open diamonds are indicated. The leftmost diamond shows the approximate location
of the transition point from one roll (on the right) to two stacked rolls (on the left).
The middle diamond shows the approximate location of the transition from one roll
(on the left) to two stacked rolls (on the right). The rightmost diamond shows the
approximate location of the transition from two stacked rolls (on the left) to three
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stacked rolls (on the right). Finally, we again note the general trend of increasing
wavenumber (decreasing wavelength) for the convection driven from the secondary
layer.

Figure 6 shows results analogous to those of figure 4 for base case III. Here, the
base state has a much thicker secondary layer (with much lower permeability) and a
much thinner primary mushy layer compared to base case I. The main solid curve
corresponds to Da =0.05. The insets – from upper left to lower right – correspond
to the four open circles indicated along the main solid curve. In the upper left-hand
inset, the convection is driven from a very thin primary mushy layer. The main flow is
confined to the primary and liquid layers, while a very weak reverse flow occurs in the
relatively impermeable secondary layer. In the lower right-hand inset, the reverse flow,
driven from the secondary layer, is centred around the primary mushy layer–liquid
layer interface. On the main solid curve, the leftmost diamond shows the approximate
location of the transition point from one roll (on the right) to two stacked rolls (on
the left) and the rightmost diamond shows the approximate location of the transition
from one roll (on the left) to two stacked rolls (on the right).

Before discussing the nonlinear results we comment on the validation of both the
linear and nonlinear codes used in this paper. First, the base-state solutions given
explicitly in § 3,.1 have been reproduced to a very high degree of accuracy using the
nonlinear numerical methods described in § 4. Secondly, the neutral stability curves
calculated as described in § 3 were consistently reproduced to within a few per cent
using nonlinear solutions which maintained a fixed small amplitude while varying the
domain width (see linear critical Rayleigh numbers given in table 2). The difference
was attributable to the truncation error in the nonlinear code owing to a relatively
coarse grid. Thirdly, both the linear and nonlinear codes used here have been validated
by comparison with the previously computed binary results of Worster (1992) and
Schulze & Worster (1999).

The computation of nonlinear finite-amplitude convecting solutions allows us to
probe further into the interaction between the convective motion set up initially
by the density stratification and the evolution (dissolution and/or growth) of the
solid fraction in each layer. As a representative case, we shall show the nonlinear
counterparts of the four convective scenarios highlighted for base case I in the insets
of figure 4. For these nonlinear computations we fix the domain width in each case
to a value that corresponds to the linear critical wavenumber (that is, L = π/αc). The
amplitude of the flow is then increased in each case until the solid fraction (either
φA in the primary layer or φB in the secondary layer) is driven to zero at some
point along the centre of the cell where the downward flow is the weakest and the
buoyancy-driven portion of the flow is directly upward. We find that such inclusions
can occur either in the primary layer (in which case a liquid inclusion is formed) or in
the secondary layer (in which case we observe a primary mushy-layer inclusion). This
information is also included in table 2, the last five columns of which indicate the
type of bifurcation, the values of the Rayleigh numbers and flow amplitude (norm of
the buoyancy-driven streamfunction) and the location of the inclusion when it first
forms upon increasing the amplitude.

Figure 7 shows the nonlinear flow for base case I(i) in which the secondary mushy
layer is very stably stratified and the primary mushy layer is unstably stratified. In
both plots, the two dark solid lines indicate the position of the interfaces separating
the liquid layer, the primary mushy layer and the secondary mushy layer. These
interface positions are notably perturbed from the linear stability case in which they
are planar. In Figure 7(a) we show isotherms (dashed curves) and the buoyancy-driven
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Figure 7. Nonlinear solutions for base case I(i). (a) Streamlines associated with the buoyant
convection (solid curves using equal spacing of 0.1 between contours) and isotherms (dashed
curves using equal spacing of 0.25 between contours). (b) Streamlines for the total mass flux
(solid curves) and the total solid fraction (dashed curves using equal spacing of 0.02 between
contours). The diamond shows the location of a liquid inclusion in the primary mushy layer.

streamlines (solid curves). Consistent with the upper left-hand inset plot in figure 4, we
see that there is a separating streamline in the secondary layer below which a reverse
flow occurs. Since this flow is very weak, these weak secondary rolls do not appear
in the plot (for clarity in the main convective rolls, we have chosen equally spaced
streamline values). In figure 7(b), we show the total solid fraction contours (dashed
curves) and streamlines for the total mass flux, which has the streamfunction ψ + x

(solid curves entering at the top of the plot and exiting at the bottom). In the case of
no buoyant convection, these streamlines would be undeflected vertical lines. Along
the centreline in the primary mushy layer is shown a region of reverse circulation and,
as indicated by the diamond, the location of a liquid inclusion in the primary mushy
layer. As pointed out by Schulze & Worster (1999), such a liquid inclusion must occur
at the bottom of the reverse circulation streamline. This observation provides another
useful diagnostic for the nonlinear code. We note that the nonlinear calculations are
not designed to compute the physically valid solution beyond the amplitude at which
the inclusion forms and so we have taken care to capture the solution as close to the
initial formation of the inclusion as possible.

Results for the other three nonlinear cases are shown in figures 8–10. In the
sequence of figures for the nonlinear case, we have used the same isotherm contours,
the same streamline values and the same solid fraction contours so that a more
quantitative comparison can be made between the results. In particular, we can see
that the convective flow becomes progressively weaker as the flow makes a transition
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Figure 8. Nonlinear solutions for base case I(ii). (a) Streamlines associated with the buoyant
convection (solid curves using equal spacing of 0.1 between contours) and isotherms (dashed
curves using equal spacing of 0.25 between contours). (b) Streamlines for the total mass flux
(solid curves) and the total solid fraction (dashed curves using equal spacing of 0.02 between
contours). The diamond shows the location of a liquid inclusion in the primary mushy layer.

from being driven in the primary layer to being driven in the secondary layer. A
comparison between figures 7 and 8 shows that the two cases are very similar, with
the exception that the case with a very stably stratified secondary mushy layer has
a weak reverse flow in the secondary mushy layer (figure 7) rather than a relatively
deep penetration of the main flow into the secondary layer (figure 8). In both of these
cases, a liquid inclusion forms in the primary mushy layer along the centreline. For
the two flows driven from the secondary mushy layer, as shown in figures 9 and 10,
we observe the formation of a primary mushy layer inclusion in the secondary mushy
layer. For the case of a very stably stratified primary mushy layer, we note that there
is again a weak reverse flow in the primary mushy layer corresponding to a stacked
convective roll (figure 10). While the solid fraction contours in this case are depressed
along the centreline in the secondary mushy layer (indicative of chimney formation
where there is a strong upflow) they are very slightly elevated along the centreline in
the primary mushy layer (where there is a downflow due to the reversed convection
cells). Finally, we note that the deflection of the interface positions from horizontal
becomes less pronounced for the cases in which the flow is driven from the secondary
mushy layer. This is due to the overall relatively weak flow that occurs in these cases.

6. Conclusion
In this paper, we have adopted the model of ternary alloy solidification first

analysed by Anderson (2003) in the context of diffusion-controlled growth from a
fixed boundary and have applied it to study convective effects during directional
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Figure 9. Nonlinear solutions for base case I(iv). (a) Streamlines associated with the buoyant
convection (solid curves using equal spacing of 0.1 between contours) and isotherms (dashed
curves using equal spacing of 0.25 between contours). (b) Streamlines for the total mass flux
(solid curves) and the total solid fraction (dashed curves using equal spacing of 0.02 between
contours). The diamond shows the location of a primary mush inclusion in the secondary
mushy layer.

solidification at a steady rate V . We have performed a linear stability analysis of this
system and have computed strongly nonlinear convective steady states that develop
from the initial bifurcation. To this end, we have reduced the parameter set by a
combination of scaling and simplifying assumptions to focus exclusively on the role
of convection.

Before discussing our results in more detail, we emphasize two general conclusions
concerning convection in ternary mushy zones. First, we found that the role of
convection could be characterized by two Rayleigh numbers – one for each mushy
layer – that combine all of the effects on the local density induced by changes in
species compositions and the thermal environment. This generalizes the binary case
(see Worster 1997) where the mushy layer can be characterized by a single Rayleigh
number. Secondly, we found that, the tie-line constraint, (2.11), can be generalized
to situations with fluid flow. As noted earlier, this condition is a consequence of
negligible solutal diffusivity and the uniform inlet concentrations that result in the
entire primary layer being constrained to the same tie-line.

Convection in the ternary alloy system is controlled first by the two independent
Rayleigh numbers, but is also influenced by the base state properties such as mushy-
layer thickness and permeability. The overall depth of the combined mushy layers is
dependent primarily on the far-field temperature, while the relative thickness of each
layer, as well as the permeability of each layer, is controlled mainly by the initial
liquid compositions. An array of different base-state configurations were examined.
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Figure 10. Nonlinear solutions for base case I(v). (a) Streamlines associated with the buoyant
convection (solid curves using equal spacing of 0.1 between contours) and isotherms (dashed
curves using equal spacing of 0.25 between contours). (b) Streamlines for the total mass flux
(solid curves) and the total solid fraction (dashed curves using equal spacing of 0.02 between
contours). The diamond shows the location of a primary mush inclusion in the secondary
mushy layer.

For representative base states, our linear and nonlinear results documented convection
in the ternary alloy system for cases in which: (i) the secondary layer was very stably
stratified and the primary layer was unstably stratified, (ii) the secondary layer was
neutrally stratified and the primary layer was unstably stratified, (iii) both layers were
unstably stratified, (iv) the secondary layer was unstably stratified and the primary
layer was neutrally stratified, and (v) the secondary layer was unstably stratified and
the primary layer was very stably stratified.

The penetration of convection from an unstably stratified layer to a stably stratified
layer was controlled by the strength and location of the unstable stratification and
the permeability contrast between layers. Convection in the primary layer was found
to generally induce a flow (comparable in magnitude) in the liquid layer, but only a
weak flow in the secondary layer. This was particularly notable if the secondary layer
had a much lower permeability. Convection in the secondary mushy layer, however,
generally produced a significant flow in the primary and liquid layers unless the
primary layer (which always had a higher average permeability than the secondary
layer) was sufficiently stably stratified to effectively contain the convection within the
secondary layer.

We found that a sharp stability contrast between primary and secondary layers
leads to smaller-scale convection (in our calculations the smallest scale patterns were
always associated with convection confined to a secondary layer by a very stably
stratified primary mushy layer). It was in these cases where we observed ‘stacked’
convection cells. That is, with convection primarily localized in the unstable layer,
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there was an adjacent set of rolls circulating in the opposite direction in the stably
stratified layer. These stacked rolls were observed consistently in the linear solutions
and the nonlinear solutions. Here we found that along a vertical line through both
mushy layers, the solid fraction perturbation could be negative in one region and
positive in another.

Our nonlinear calculations were consistent with our linear results, but also showed
the further development of the flow at finite amplitude. As with its binary alloy
counterpart, the ternary mushy-layer system is composed of reactive porous media
whose solid matrix may undergo growth or dissolution as a result of transport of heat
and solute by the flow. We have identified two manifestations of this property. First,
for convection driven in the primary mushy layer, we found that nonlinear states
with liquid inclusions in the primary mushy layer were possible. These inclusions
are similar to those identified by Schulze & Worster (1999) for binary alloys. For
convection driven in the secondary layer, we found that nonlinear states with primary
mushy-layer inclusions in the secondary mushy layer (which is composed of dendrites
of one species as well as dendrites of a second species) were possible.

While convection was found to be the result of a nearly vertical bifurcation over
the range of amplitudes where the solid fractions remained positive, the nonlinear
calculations revealed that the bifurcation for convection driven in the primary mushy
layer was supercritical, and that driven in the secondary mushy layer was subcritical.
Since the inclusion first develops where convection is the strongest, liquid inclusions in
the primary layer were associated with supercritical bifurcations and mush inclusions
in the secondary layer were associated with subcritical bifurcations. While this was
true of all the cases we examined, including some not presented here, we emphasize
that this correlation may not hold generally. This would be an interesting topic to
explore with a weakly nonlinear analysis, which would allow for a computationally
more efficient exploration of parameter space. A nonlinear stability analysis would
also confirm that the subcritical solutions are unstable and the supercritical solutions
stable, which is what we would anticipate from other convection problems. If this
is indeed the case, the inclusions that form along a supercritical bifurcation could
be studied experimentally – an option that is apparently unavailable for the binary
system.

There are several additional avenues that warrant further investigation. First, there
is the issue of modelling and calculating solutions with inclusions of primary mush
in the secondary layer. This is a phenomenon unique to the ternary case and may be
somewhat easier to capture than the liquid inclusions characteristic of the binary case
since the governing equations are virtually the same on both sides of the interface.
This situation would require a further generalization of the tie-line constraint so that
each streamline entering such an inclusion would carry its own composition ratio
for the passive species. Secondly, the inclusion of solutal diffusion (where the tie-line
constraint does not apply) may reveal new convective modes not observed here. In
particular, we anticipate that the inclusion of solutal diffusivity in the ternary case
will lead to a second mode of fine-scale convection in the diffusive boundary layer
at the liquid–mush interface analogous to that identified for binary convection by
Worster (1992). In the ternary alloy, Anderson (2003) showed the existence of a
solute boundary layer above the mush–mush interface and we may expect additional
modes associated with this boundary layer. Finally, a detailed analysis of the effects
of thermal convection in the ternary system, as was undertaken for binary alloys by
Chen et al. (1994), as well as the effects of time dependence and three-dimensional
geometry may be both tractable and of interest for ternary alloys.
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